Abstract

ABSTRACT In this report, possible utilization of a chromium-reducing bacterial strain Cellulosimicrobium cellulans KUCr3 for effective bioremediation of hexavalent chromium (Cr(VI))-containing wastewater fed with tannery effluents has been discussed. Cr(VI) reduction and bioremediation were found to be related to the growth supportive conditions in wastewater, which is indicative of cell mass dependency for Cr(VI) reduction. Cr(VI) reduction was determined by measuring the residual Cr(VI) in the cell-free supernatant using colorimetric reagent S-diphenylcarbazide. Nutrient availability and initial cell density showed a positive relation with Cr(VI) reduction, but it was inhibited with increasing concentration of Cr(VI) under laboratory condition. The optimum temperature and pH for effective Cr(VI) reduction in wastewater were found to be 35°C and 7.5, respectively. The viable cells of KUCr3 were successfully entrapped in an agarose bead that was used in continuous column and batch culture for assaying Cr(VI) reduction. In packed bed column (continuous flow) experiment, approximately 25% Cr(VI) reduction occurred after 144 h. Cr(VI) was almost 75% and 52% reduced at concentrations of 0.5 mM and 2 mM Cr(VI), respectively, after 96 h in batch culture experiment in peptone-yeast extract-glucose medium, whereas it could decrease the Cr(VI) content up to 40% from the water containing tannery waste. This study suggests that KUCr3 could be used as a candidate for possible environmental clean up operation with respect to Cr(VI) bioremediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call