Abstract

Present study investigated the Cu2+ removal potential of Trichoderma lixii CR700, isolated from enormously heavy metal polluted electroplating wastewater. In the batch study, actively growing CR700 was able to remove 84.6% of Cu2+ at the concentration 10 mg/L of Cu2+ within 120 h after incubation and the accumulated and surface adsorbed amount of Cu was 0.51 and 0.47 mg/g of dry biomass respectively. T. lixii CR700 also showed efficient Cu2+ removal potential in the pH ranges from 5.0 to 8.0, in the presence of other co-occurring contaminant such as heavy metal, anions and metabolic inhibitor as well from real tannery wastewater. Alteration on cell surface of Cu2+ treated mycelia of T. lixii CR700 was analyzed using scanning electron microscope. Fourier transform infrared spectroscopic analysis was performed to identify the role of surface functional group in Cu2+ adsorption which revealed that COO─ functional group lead Cu2+ adsorption onto the surface of T. lixii CR700. Thus, T. lixii CR700 uses simultaneous surface sorption and accumulation mechanism in Cu2+ removal and can be potentially applied for bioremediation of Cu2+ contaminated wastewater in ecofriendly, safe and sustainable way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.