Abstract

The potential of olive wastes for development of a multi-product biorefinery was investigated. Different parts of olive wastes, i.e., stone, pomace, leaves, and wood, were subjected to liquid hot water, organosolv, and acid-catalyzed organosolv (ACO) pretreatments prior to bioconversion through three different scenarios. The first scenario, i.e., anaerobic digestion of substrates for biogas production, yielded 219.3 m3 biomethane per hectare of olive trees, equated to 247.4 L gasoline. The highest methane production of 103.3 m3 was attributed to liquid hot water pretreated wood and ACO increased methane yield for leaf and stone samples by 200 and 33%, respectively. The second scenario, i.e., fermentation of wastes for bioethanol production, resulted in 295.9 L bioethanol per hectare of olive trees, equivalent to 196.1 L gasoline. Organosolv pretreated wood with 82.9% production yield and 152.5 L bioethanol constitutes this plan's dominant part. The ACO pretreatment improved fermentation yield for pomace and stone samples by 49% and 53%, respectively. The third scenario, included the utilization of olive wastes in bioethanol production, anaerobic digestion of fermentation residues, and lignin separation, resulted in 295.9 L bioethanol, 137.2 m3 biomethane, and 347.1 kg lignin, equated with 521.6 L gasoline. Furthermore, the remaining oil content in pomace and stone samples was 17% and 20%, respectively, which could be used for biodiesel production. Overall, olive wastes processing through an integrated biorefinery plant with multiple products significantly improved the energy recovery of the whole plant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call