Abstract
Spathaspora passalidarum is a naturally pentose-fermenting yeast with the potential to be applied for biotransformation of sugars from lignocellulosic biomasses. Despite being mostly investigated for ethanol production from sugarcane bagasse sugars (mainly xylose and glucose), this microorganism is also capable of producing high xylitol concentrations as a by-product of the ethanol fermentation. The integration of ethanol and xylitol production can improve the economic viability of the process due to the lower sale price of ethanol and the higher added-value of xylitol, a sucrose-substitute sugar with healthier properties. Considering the metabolic pathways interaction from glucose and xylose, it is essential to understand the effect of different glucose and xylose concentrations in the production of ethanol and xylitol by S. passalidarum. In this way, a simultaneous production of both products for the development of an integrated platform for food and chemical and biofuel industries can be accessed. Yeast biomass can also be recovered and applied as a protein source. Therefore, in this study, the fermentative performance of S. passalidarum was investigated in batch fermentations with different xylose and glucose concentrations, using synthetic substrate. The ATP levels and the enzymatic activities of xylose reductase (XR), xylitol dehydrogenase (XDH), and alcohol dehydrogenase (ADH) were also determined for each condition. The results indicated that low amounts of glucose (35%) were necessary to promote a higher xylitol production (10.58 ± 0.29 g/L) without losses on ethanol yield (78.99 ± 4.41%), being the most interesting condition for simultaneous formation of both products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.