Abstract

Oleuropein aglycone is an important antioxidant compound produced during oleuropein hydrolysis, not yet commercially available. Its production from renewable material by green processes is a challenge because it permits waste re-use and low environmental impact. In this work, homemade asymmetric capillary ceramic membranes were used to develop biocatalytic membranes, which were further used to produce oleuropein aglycone from olive leaves and/or commercial oleuropein. Results indicated that the biocatalytic system (containing covalently immobilized β-glucosidase) promotes the hydrolysis of oleuropein in both monophase and multiphase processes. Furthermore, the multiphase biocatalytic system enables the extraction of the hydrophobic oleuropein aglycone in an organic phase, before its rearrangement in water. This was achieved by the production, of an unstable water-in-oil emulsion (permeate side), on the basis of membrane emulsification process. The intensified biocatalytic/extractor system allowed taking shelter the hydrophobic compound in the organic phase with good efficiency (90%), protecting it from rearrangement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.