Abstract

In this study, a novel Cr(VI) tolerant strain CRB-7 identified as Bacillus sp., was isolated and characterized for its high Cr(VI) reduction. The strain CRB-7 grew well and effectively reduced Cr(VI) under various conditions including pH (7-9), temperature (30-40 °C) and Cr(VI) concentrations (50-250 mg L-1). It almost completely reduced 120 mg L-1 Cr(VI) within 48 h under optimized condition of pH 7 and 37 °C. Further characterization by SEM-EDS and FTIR analyses indicated Cr(VI) removal mechanism of CRB-7 was predominately via bioreduction with little amount of bioadsorption. Furthermore, the strain CRB-7 based immobilized biobeads were successfully synthesized using five different porous materials as bacterial loading carrier respectively to ascertain the optimal immobilization biocomposite for Cr(VI) removal. CRB-7 cells immobilized with 3% sodium alginate (SA) and 5% humic acid (HA) exhibited the highest Cr(VI) removal efficiency. Moreover, immobilized biobeads have the advantages over free cells in being more stable and easier to reuse. High Cr(VI) reducing ability of the free and immobilized CRB-7 cells suggest the strain CRB-7, especially the B-HA-SA biocomposite is promising for remediating Cr(VI)-contaminated sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.