Abstract

A series of cationic polymers based on low generation (G1) peptide dendrimer were synthesized with disulfide-containing linkages. The DNA binding abilities of the target polymers were studied by gel electrophoresis and fluorescence quenching assay. The bioreducible property of the disulfide-containing polymers P2 and P3 was also investigated in the presence of dithiothreitol (DTT). Results from dynamic light scattering (DLS) and transmission electron microscopy (TEM) assays reveal that these materials may condense DNA into nanoparticles with proper sizes and zeta-potentials. In vitro cell experiments show that compared to branched 25 KDa PEI, P2 and P3 may exhibit much higher gene transfection efficiency and lower cytotoxicity in both HEK293 and U-2OS cells. Additionally, polymer prepared from Michael addition gives better gene transfection ability, while polymer prepared from ring-opening reaction has better serum tolerance. Results indicate that these polymers might be promising non-viral gene vectors for their easy preparation, very low cytotoxicity, and good transfection efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call