Abstract

Cationic polymers have been widely investigated for gene delivery, although their low transfection efficiency and high cytotoxicity limit their application. We synthesized a bioreducible cationic random copolymer, poly(cystamine bisacylamide‐aminoethyl piperazine)‐co‐poly(cystamine bisacylamide‐histamine) (denoted as CBA‐AEP‐His) from N,N′‐cystamine bis acrylamide (CBA) with aminoethyl piperazine (AEP) and histamine (His). CBA‐AEP‐His copolymer possesses disulfide linkages that endow it with redox‐responsivity to the intracellular environment. This polymer efficiently condenses pZNF580 into complexes with the size of 160 ± 4 nm to 280 ± 5 nm and positive zeta potential of 20 ± 0.3 mV to 30 ± 0.4 mV. The gel‐retardation assay shows that CBA‐AEP‐His can retard pZNF580 even at a low mass ratio of 1/1. The gene complexes were triggered to release pZNF580 when exposed to the reducing environment of dithiothreitol (DTT). CBA‐AEP‐His random copolymer presented higher buffer capacity owing to its His moieties, which protected pZNF580 from DNase degradation. The gene transfection results reveal that CBA‐AEP‐His can efficiently deliver pZNF580 and transfect EA. Hy926 cells. The MTT assay indicates that CBA‐AEP‐His and its complexes exhibit lower cytotoxicity than PEI25KDa. These results illustrate that CBA‐AEP‐His had promising properties for gene delivery, which may provide a suitable platform for the development of a non‐viral gene carrier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call