Abstract

A novel bioreactor system constructed for studies of the interactions of heavy metals and microbial cells at the solid-solution interface is described. The applicability of this experimental system to meet the severe constraints imposed on such an apparatus by the requirements for an unambiguous interpretation of data and for mathematical modeling of these interactions was explored with the trace metal lead and with the marine bacterium Pseudomonas atlantica. A chemically defined medium composed of the major components of seawater, simple salts required for growth, glucose, and the single amino acid glycine was derived. It supported a maximum growth rate several times less than that in a complex medium, but provided growth to high cell densities and the formation of biopolymer and supported the development of a monolayer biofilm. The use of such a medium in conjunction with our bioreactor system minimized trace metal contamination while allowing quantification of the partitioning of lead onto various reactor surfaces. Lead adsorption by reactor walls and model surfaces was linear with equilibrium led concentration up to 6 X 10(-6) mol/liter. Equilibrium lead adsorption due to P. atlantica biofilm surfaces ranged from 20 to 40% at a total lead concentration of 10(-6) mol/liter depending upon solution pH and ionic composition, indicating that biofilms can play an important role in controlling toxic metal concentrations in natural systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.