Abstract

Metarhizium anisopliae spores are a promising alternative to chemical insecticides against malaria mosquitoes. In-house application resulting in infection of mosquitoes with the fungus can strongly contribute to reducing malaria transmission. For such application, fungal spores need to be produced in large quantities. Cultivation of the fungus on several solid substrates and in two bioreactor types for solid state fermentation was studied. Our experiments showed that M. anisopliae cannot withstand mixing; therefore aerated static packed beds are the most suitable reactor type. Based on spore yields (0.18kgsporeskg−1 substrate, 5.5×1014sporesm−3 reactor volume) and its favorable physical properties, hemp impregnated with a nutrient medium was selected for further research. Total nutrient concentrations between 250 and 313kgm−3 medium gave the highest productivities; the maximum concentration imposed by water losses for evaporative cooling was estimated at 240kgm−3. Combined autoclaving of nitrogen and carbon sources consistently gave lower average productivities. Pilot-scale fermentation demonstrated the feasibility of scale-up of the aerated packed bed with impregnated hemp, showing its potential for large scale production of M. anisopliae spores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.