Abstract

IntroductionThe increase in the prevalence of aortic stenosis due to an aging population has led to an increasing number of surgical aortic valve replacements. Over the past 20 years, there has been a major shift in preference from mechanical to bioprosthetic valves. However, despite efforts, there is still no "ideal" bioprosthesis. It is crucial to understand the structure, biology, and function of native heart valves to design more intelligent, strong, durable, and physiological heart valve tissues.MethodsA comprehensive review of the literature was performed to identify articles reporting the basic mechanisms of bioprosthetic valve dysfunction and the biology of native valve cells. Searches were run in PubMed, MEDLINE® (the Medical Literature Analysis and Retrieval System Online), and Google Scholar. Terms for subject heading and keywords search included “biological heart valve dysfunction”, “bioprosthesis dysfunction”, “bioprosthesis degeneration”, and “tissue heart valves”.ResultsAll the relevant findings are summarized in the appropriate subsections. Structural dysfunction is a logical and expected consequence of the chemical, mechanical, and immunological processes that occur during fixation, manufacture, and implantation.ConclusionBiological prosthesis valve dysfunction is a clinically significant process. It has become a major issue considering the growing rate of bioprosthesis implantation and improved long-term patient survival. Understanding bioprosthetic aortic valve degeneration from a basic science perspective is a key point to improve technologic advances and specifications that lead to a new generation of bioprostheses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.