Abstract

Widespread use of chemical fertilizers and falling productivity in traditional agricultural practices has led to the biodiversity hotspot of North-Eastern region of India to face imminent threat to soil nutrients and biodiversity. The present work aimed to isolate rhizobacteria from Oryza sativa L. to evaluate their plant growth-promoting traits like indole, ammonia, siderophore production, and phosphate solubilization followed by in vitro plant growth promotion and anti-fungal assessment against Curvularia oryzae. Moreover, presence of heavy metals such as arsenic in chemical fertilizers and in groundwater contributes to arsenic contamination of agricultural soil. Taking this into consideration for the present study, the background metal content of the bulk soil, roots and grains of rice was measured. Arsenic tolerance of the rhizobacterial isolates was assessed using different concentrations of arsenite- and arsenate-supplemented media. 16S rRNA gene sequencing and phylogenetic tree analysis identified the isolates as Bacillus paramycoides, B. albus, B. altitudinis, B. koreensis, B. megaterium, B. wiedmannii, B. paramycoides, Chryseobacterium gleum, Stenotrophomonas maltophilia and Pseudomonas shirazica. Considering the acidic nature of the paddy growing soil, the growth kinetics of the isolates were monitored in acid and arsenic-supplemented conditions for 48h of growth. Few isolates showed potent anti-fungal activity against the late blight phytopathogen, Curvularia oryzae MTCC 2605, apart from being potential growth promoters. The findings open vistas for the mass production of the characterized PGP rhizobacteria for their application in rehabilitation of the degrading arsenic contaminated paddy fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call