Abstract

Simple SummaryLovastatin is a fungal secondary metabolite that can mitigate rumen methane production. This work aimed at evaluating the lovastatin production by solid-state fermentation from selected crop residues and A. terreus strains, considering the post-fermented residues as feed supplements for ruminants. Fermented oat straw by A. terreus CDBB H-194 exhibited the highest lovastatin yield (23.8 mg/g DM fed). GC–MS analysis identified only a couple of compounds from the residues fermented by CDBB H-194 (1,3-dipalmitin trimethylsilyl ether in the fermented oat straw) and stearic acid hydrazide in the fermented wheat bran) that could negatively affect ruminal bacteria and fungi.This work aimed to evaluate the lovastatin (Lv) production by solid-state fermentation (SSF) from selected crop residues, considering the post-fermented residues as feed supplements for ruminants. The SSF was performed with two substrates (wheat bran and oat straw) and two A. terreus strains (CDBB H-194 and CDBB H-1976). The Lv yield, proximate analysis, and organic compounds by GC–MS in the post-fermented residues were assessed. The combination of the CDBB H-194 strain with oat straw at 16 d of incubation time showed the highest Lv yield (23.8 mg/g DM fed) and the corresponding degradation efficiency of hemicellulose + cellulose was low to moderate (24.1%). The other three treatments showed final Lv concentrations in decreasing order of 9.1, 6.8, and 5.67 mg/g DM fed for the oat straw + CDBB H-1976, wheat bran + CDBB H-194, and wheat bran + CDBB H-1976, respectively. An analysis of variance of the 22 factorial experiment of Lv showed a strong significant interaction between the strain and substrate factors. The kinetic of Lv production adequately fitted a zero-order model in the four treatments. GC–MS analysis identified only a couple of compounds from the residues fermented by A. terreus CDBB H-194 (1,3-dipalmitin trimethylsilyl ether in the fermented oat straw and stearic acid hydrazide in the fermented wheat bran) that could negatively affect ruminal bacteria and fungi. Solid-state fermentation of oat straw with CDBB H-194 deserves further investigation due to its high yield of Lv; low dietary proportions of this post-fermented oat straw could be used as an Lv-carrier supplement for rumen methane mitigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call