Abstract

Human pluripotent stem cell (hPSC)-derived cell therapy requires production of therapeutic cells in large quantity, which starts from thawing the cryopreserved cells from a working cell bank or a master cell bank. An optimal cryopreservation and thaw process determines the efficiency of hPSC expansion and plays a significant role in the subsequent lineage-specific differentiation. However, cryopreservation in hPSC bioprocessing has been a challenge due to the unique growth requirements of hPSC, the sensitivity to cryoinjury, and the unscalable cryopreservation procedures commonly used in the laboratory. Tremendous progress has been made to identify the regulatory pathways regulating hPSC responses during cryopreservation and the development of small molecule interventions that effectively improves the efficiency of cryopreservation. The adaption of these methods in current good manufacturing practices (cGMP)-compliant cryopreservation processes not only improves cell survival, but also their therapeutic potency. This review summarizes the advances in these areas and discusses the technical requirements in the development of cGMP-compliant hPSC cryopreservation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.