Abstract

Objective: Agro-industrial residues are primarily composed of complex polysaccharides that strengthen microbial growth for the production of industrially important enzymes. For industrial use, pectinases can be produced from several agricultural pectin-containing wastes like orange peel. The selection of cheap source benefits the production of industrial important enzymes in term to costs-effective production. Methods: The indigenously produced pectinase was purified to homogeneity level using a combination of ammonium sulphate precipitation and Sephadex G-100 gel filtration chromatography. The molecular weight and properties of the purified enzyme were studied following the standard procedures. Results: Under optimized solid state fermentation conditions Trichoderma viridi exhibited superior enzymatic production. On optimization, the culture showed the maximum enzyme yield (325 U/mL) at 30 °C in an orange peel medium having a pH of 5.5 and a substrate concentration of 4% on the 4th day of fermentation of orange peel based medium that was additionally supplemented with glucose and ammonium chloride as an inexpensive carbon and nitrogen supplements in a ratio of 20:1, respectively. A purification fold of 5.59 with specific activity and percent recovery of 97.2 U/mg and 12.96% was achieved respectively. The molecular weight of purified pectinase from T. viridi was 30 kDa evidenced by PAGE analysis. After 6 h incubation the pectinase activity profile showed that the purified enzyme was optimally active and stable at a pH of 5 and at 60°C. Conclusions: The present study concluded that the indigenous strain T. viridi showed incredible potential for pectinase synthesis. The maximum production of pectinase in the presence of a cheaper substrate at low concentrations makes the enzyme useful in industrial sectors, especially for the textile and juice industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.