Abstract
Process in-line monitoring and control are crucial to optimize the productivity of bioprocesses. A frequently applied Process Analytical Technology (PAT) tool for bioprocess in-line monitoring is Raman spectroscopy. However, evaluating bioprocess Raman spectra is complex and calibrating state-of-the-art statistical evaluation models is effortful. To overcome this challenge, we developed an Indirect Hard Modeling (IHM) prediction model in a previous study. The combination of Raman spectroscopy and the IHM prediction model enables non-invasive in-line monitoring of glucose and ethanol mass fractions during yeast fermentations with significantly less calibration effort than comparable approaches based on statistical models. In this study, we advance this IHM-based approach and successfully demonstrate that the combination of Raman spectroscopy and IHM is capable of not only bioprocess monitoring but also bioprocess control. For this purpose, we used this combination's in-line information as input of a simple on-off glucose controller to control the glucose mass fraction in Saccharomyces cerevisiae fermentations. When we performed two of these fermentations with different predefined glucose set points, we achieved similar process control quality as approaches using statistical models, despite considerably smaller calibration effort. Therefore, this study reaffirms that the combination of Raman spectroscopy and IHM is a powerful PAT tool for bioprocesses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.