Abstract

This paper presents a novel method for bioprocess hybrid parametric/nonparametric modelling based on mixture of experts (ME) and the expectation maximisation (EM) algorithm. The bioreactor system is described by material balance equations whereas the cell population subsystem is described by an adjustable mixture of parametric/nonparametric sub-models inspired in the ME architecture. This idea was motivated by the fact that cellular metabolism has an inherent “modular” structure, organised in metabolic pathways, with complex interactions. This study was supported by simulations using models of different levels of complexity. The proposed method was compared with the conventional hybrid technique employing the multi-layer perceptron (MLP) and the radial basis function (RBF) networks. As main conclusions it can be stated that MEs trained with the EM algorithm are able to systematically detect metabolic shifts with the individual experts developing expertise in describing the individual pathways. The hybrid ME model with thin-plate spline RBF network as experts outperforms both the hybrid MLP model and the hybrid RBF model in its ability to describe metabolic switches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.