Abstract

This study addresses a critical challenge in bioprinting for regenerative medicine, specifically the issue of hypoxia compromising cell viability in engineered tissues. To overcome this hurdle, a novel approach using a microfluidic bioprinter is used to create a two-layer structure resembling the human ovary. This structure incorporates a liposomal oxygen-releasing system to enhance cell viability. The bioprinting technique enables the simultaneous extrusion of two distinct bioinks, namely, bioink A (comprising alginate 1% and 5 mg/mL PEGylated fibrinogen in a 20:1 molar ratio) and bioink B (containing alginate 0.5%). In addition, liposomal catalase and hydrogen peroxide (H2O2) are synthesized and incorporated into bioinks A and B, respectively. The liposomes are prepared using thin film hydration with a monodisperse size (140-160 nm) and high encapsulation efficiency. To assess construct functionality, isolated human ovarian cells are added to bioink A. The bioprinted constructs, with or without liposomal oxygen-releasing systems, are cultured under hypoxic and normoxic conditions for 3 days. Live/Dead assay results demonstrate that liposomal oxygen-releasing systems effectively preserve cell viability in hypoxic conditions, resembling viability under normoxic conditions without liposomes. PrestoBlue assay reveals significantly higher mitochondrial activity in constructs with liposomal oxygen delivery systems under both hypoxic and normoxic conditions. The evaluation of apoptosis status through annexin V immunostaining shows that liposomal oxygen-releasing scaffolds successfully protect cells from hypoxic stress, exhibiting a proportion of apoptotic cells similar to normoxic conditions. In contrast, constructs lacking liposomes in hypoxic conditions exhibit a higher incidence of cells in early-stage apoptosis. In conclusion, the study demonstrates the promising potential of bioprinted oxygen-releasing liposomal scaffolds to protect ovarian stromal cells in hypoxic environments. These innovative scaffolds not only offer protection but also recapitulate the mechanical differences between the medulla and the cortex in the normal ovary structure. This opens new avenues for advanced ovary tissue engineering and transplantation strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call