Abstract

Background: To prioritize compounds with a higher likelihood of success, artificial intelligence models can be used to predict absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of molecules quickly and efficiently. Methods: Models were trained with BioPrint database proprietary data along with public datasets to predict various ADMET end points for the SAFIRE platform. Results: SAFIRE models performed at or above 75% accuracy and 0.4 Matthew's correlation coefficient with validation sets. Training with both proprietary and public data improved model performance and expanded the chemical space on which the models were trained. The platform features scoring functionality to guide user decision-making. Conclusion: High-quality datasets along with chemical space considerations yielded ADMET models performing favorably with utility in the drug discovery process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.