Abstract

Effective cancer treatment is becoming a global concern, and recent developments in nanomedicine are essential for its treatment. Cancer is a severe metabolic syndrome that affects the human population and is a significant contributing factor to deaths globally. In science, nanotechnology offers rapidly developing delivery methods for natural bioactive compounds that are becoming increasingly prominent and can be used to treat diseases in a site-specific way. Chemotherapy and radiotherapy are conventional approaches for preventing cancer progression and have adverse effects on the human body. Many chemically synthesized drugs are used as anticancer agents, but they have several side effects; hence, they are less preferred. Medicinal plants and marine microorganisms represent a vast, mostly untapped reservoir of bioactive compounds for cancer treatment. However, they have several limitations, including nonspecific targeting, weak water solubility and limited therapeutic potential. An alternative option is the use of biopolymeric nanocarriers, which can generate effective targeted treatment therapies when conjugated with natural anticancer compounds. The present review focuses on biopolymeric nanocarriers utilizing natural sources as anticancer drugs with improved tumor-targeting efficiency. This review also covers various natural anticancer compounds, the advantages and disadvantages of natural and synthetic anticancer compounds, the problems associated with natural anticancer drugs and the advantages of biopolymeric nanocarriers over synthetic nanocarriers as drug delivery agents. This review also discusses various biopolymeric nanocarriers for enhancing the controlled delivery of anticancer compounds and the future development of nanomedicines for treating cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.