Abstract

The extent to which biologic payloads can be effectively delivered to cells is a limiting factor in the development of new therapies. Limitations arise from the lack of pharmacokinetic stability of biologics in vivo. Encapsulating biologics in a protective delivery vector has the potential to improve delivery profile and enhance performance. Coacervate microdroplets are developed as cell-mimetic materials with established potential for the stabilization of biological molecules, such as proteins and nucleic acids. Here, the development of biodegradable coacervate microvectors (comprising synthetically modified amylose polymers) is presented, for the delivery of biologic payloads to cells. Amylose-based coacervate microdroplets are stable under physiological conditions (e.g., temperature and ionic strength), are noncytotoxic owing to their biopolymeric structure, spontaneously interacted with the cell membrane, and are able to deliver and release proteinaceous payloads beyond the plasma membrane. In particular, myoglobin, an oxygen storage and antioxidant protein, is successfully delivered into human mesenchymal stem cells (hMSCs) within 24 h. Furthermore, coacervate microvectors are implemented for the delivery of human bone morphogenetic protein 2 growth factor, inducing differentiation of hMSCs into osteoprogenitor cells. This study demonstrates the potential of coacervate microdroplets as delivery microvectors for biomedical research and the development of new therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.