Abstract

Biomass from four different Nordic microalgal species, grown in BG-11 medium or synthetic wastewater (SWW), was explored as inexpensive carbohydrate-rich feedstock for polyhydroxybutyrate (PHB) production via microbial fermentation. Thermochemical pre-treatment (acid treatment followed by autoclavation) with 2% hydrochloric acid or 1% sulphuric acid (v/v) was used to maximize sugar yield prior to fermentation. Pre-treatment resulted in ∼5-fold higher sugar yield compared to the control. The sugar-rich hydrolysate was used as carbon source for the PHB-producing extremophilic bacterium Halomonas halophila. Maximal PHB production was achieved with hydrolysate of Chlorococcum sp. (MC-1) grown on BG-11 medium (0.27 ± 0.05 g PHB/ g DW), followed by hydrolysate derived from Desmodesmus sp. (RUC-2) grown on SWW (0.24 ± 0.05 g PHB/ g DW). Nordic microalgal biomass grown on wastewater therefore can be used as cheap feedstock for sustainable bioplastic production. This research highlights the potential of Nordic microalgae to develop a biobased economy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.