Abstract

AbstractGiant and stable wormlike micelles formed in water from a series of poly(ethylene oxide) (PEO)‐based diblock copolymer amphiphiles mimicked the flexibility of various cytoskeletal filaments. The worm diameter (d) was found by cryo‐transmission electron microscopy to scale with the length of the hydrophobic chain (Nh) of the copolymer as d ∼ Nh0.61. By fluorescence video imaging of worm dynamics, we also showed that the persistence length (lP) of wormlike micelles scaled as lP ∼ d2.8, consistent with a fluid aggregate (∼d3) rather than a solid rod (∼d4). By polymerizing the unsaturated bonds of assembled copolymers, fluid worms were converted to solid‐core worms, extending the bending rigidity from that of intermediate filament biopolymers to actin filaments and, in principle, microtubules. Through partial crosslinking, polymerized worms further locked in spontaneous curvature at a novel fluid‐to‐solid percolation point. The dynamics of distinct, branched conformations were also imaged for recently discovered Y‐junctioned wormlike micelles composed of diblocks of high molecular weight (>10–15 kg/mol). Finally, block copolymers of hydrophilic weight fraction close to the transition between a vesicle‐ and worm‐former assembled into both structures, allowing encapsulation of wormlike micelles in giant vesicles reminiscent of cytoskeletal filaments enclosed within cells. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 168–176, 2004

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.