Abstract

This study was conducted to elucidate the conformational dependence of the modulating ability of chitosan, a positively charged biopolymer, on a new type of liposome composed of mixed lipids including egg yolk phosphatidylcholine (EYPC) and nonionic surfactant (Tween 80). Analysis of the dynamic and structure of bilayer membrane upon interaction with chitosan by fluorescence and electron paramagnetic resonance techniques demonstrated that, in addition to providing a physical barrier for the membrane surface, the adsorption of chitosan extended and crimped chains rigidified the lipid membrane. However, the decrease in relative microviscosity and order parameter suggested that the presence of chitosan coils disturbed the membrane organization. It was also noted that the increase of fluidity in the lipid bilayer center was not pronounced, indicating the shallow penetration of coils into the hydrophobic interior of bilayer. Microscopic observations revealed that chitosan adsorption not only affected the morphology of liposomes but also modulated the particle aggregation and fusion. Especially, a number of very heterogeneous particles were visualized, which tended to confirm the role of chitosan coils as a "polymeric surfactant". In addition to particle deformation, the membrane permeability was also tuned. These findings may provide a new perspective to understand the physiological functionality of biopolymer and design biopolymer-liposome composite structures as delivery systems for bioactive components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.