Abstract

Sodium hyaluronate (HA) is a natural polysaccharide. This biopolymer occurs in many tissues of living organisms. The regenerating, nourishing, and moisturizing properties as well as the rheological properties of HA enable its application in the pharmaceutical industry as a carrier of medicinal substances. The aim of this work was to assess the release of naproxen sodium (Nap) in the presence of lidocaine hydrochloride (Lid) from the biopolymer-based hydrogels and to determine the respective kinetic parameters of this process. The possible interaction between the HA polysaccharide carrier and the selected drugs was also investigated. Three hydrogels containing Nap and Lid with different concentrations of the biopolymer were prepared. The release of Nap was studied by employing USP apparatus 5. The infrared study and differential scanning calorimetry analysis of physical mixtures and dried formulations were performed. The highest amount of Nap was released from the formulation with the lowest concentration of the biopolymer. The most representative kinetic model that described the dissolution of Nap was obtained through the Korsmeyer–Peppas equation. The release rate constants were in the range of 1.0 ± 0.1 × 10−2 min−n–1.7 ± 0.1 × 10−2 min−n. Lid did not influence the dissolution of Nap from the formulations tested; however, in the desiccated samples of assessed formulations, the interaction between the polysaccharide and both drugs was observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call