Abstract

Recently there have been multiple calls for curricular reforms to develop new pathways to the science, technology, engineering and math (STEM) disciplines. In response, I propose a conceptual framework for quantitative scientific modeling skills that are useful across all the STEM disciplines. The approach actively engages students in a process of directed scientific discovery using Monte Carlo simulations and finite difference methods using the “Marble Game” as a model system. In a “Student Assessment of their Learning Gains” (SALG) survey, students identified this approach as producing “great gains” in their understanding of real world problems and scientific research. Students build a conceptual framework that applies directly to random molecular-level processes in biology such as diffusion and interfacial transport. It is also isomorphic with a reversible first-order chemical reaction providing conceptual preparation for chemical kinetics. The computational and mathematical framework can also be applied to investigate the predictions of quantitative physics models ranging from Newtonian mechanics through RLC circuits. To test this approach, students were asked to derive a novel theory of osmosis. The test results confirm that they were able to successfully apply the conceptual framework to a new situation under final exam conditions. The marble game thus provides a pathway to the STEM disciplines that includes quantitative biology concepts in the undergraduate curriculum - from the very first class. DUE-0836833 http://circle4.com/biophysics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.