Abstract

ObjectiveDirect activation of the hyperdirect (HD) pathway has been linked to therapeutic benefit from subthalamic deep brain stimulation (DBS) for the treatment of Parkinson’s disease (PD). We sought to quantify the axonal conduction biophysics of corticofugal axons directly stimulated by subthalamic DBS and reconcile those findings with short-latency cortical evoked potential (EP) results. MethodsWe used a detailed computational model of human subthalamic DBS to quantify axonal activation and conduction. Signal propagation to cortex was evaluated for medium (5.7 µm), large (10.0 µm), and exceptionally large (15.0 µm) diameter corticofugal axons associated with either internal capsule (IC) fibers of passage or the HD pathway. We then compared the modeling results to human cortical EP measurements that have described an exceptionally fast component (EP0) occurring ~1 ms after the stimulus pulse, a fast component (EP1) at ~3 ms, and a slower component (EP2) at ~5 ms. ResultsSubthalamic stimulation of the HD pathway with large and medium diameter axons propagated action potentials to cortex with timings that coincide with the EP1 and EP2 signals, respectively. Only direct activation of exceptionally large diameter fibers in the IC generated signals that could approach the EP0 timing. However, the action potential biophysics do not generally support the existence of a cortical EP less than 1.5 ms after DBS onset. ConclusionsThe EP1 and EP2 signals can be biophysically linked to antidromic activation of the HD pathway. SignificanceTheoretical reconstruction of cortical EPs from subthalamic DBS demonstrate a convergence of anatomical, biophysical, and electrophysiological results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call