Abstract

The matrix space of mitochondria is surrounded by two membranes. The mitochondrial inner membrane contains the respiration chain and a large number of highly specific carriers for the mostly anionic substrates of mitochondrial metabolism. In contrast to this the permeability properties of the mitochondrial outer membrane are by far less specific. It acts as a molecular sieve for hydrophilic molecules with a defined exclusion limit around 3000 Da. Responsible for the extremely high permeability of the mitochondrial outer membrane is the presence of a pore-forming protein termed mitochondrial porin. Mitochondrial porins have been isolated from a variety of eukaryotic cells. They are basic proteins with molecular masses between 30 and 35 kDa. Reconstitution experiments define their function as pore-forming components with a single-channel conductance of about 0.40 nS (nano Siemens) in 0.1 M KCl at low voltages. In the open state mitochondrial porin behaves as a general diffusion pore with an effective diameter of 1.7 nm. Eukaryotic porins are slightly anion-selective in the open state but become cation-selective after voltage-dependent closure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.