Abstract
Human Body Communication (HBC) is an alternative to radio wave-based Wireless Body Area Network (WBAN) because of its wide bandwidth leading to enhanced energy efficiency. Designing Modern HBC devices need the accurate electrical equivalent of the HBC channel for energy efficient communication. The objective of this paper is to present an improved lumped element-based detailed model of Galvanic HBC channel which can be used to explain the dependency of the channel behaviour on the internal body dependent parameters such as electrical properties of skin and muscle tissue layers along with the external parameters such as electrode size, electrode separation, geometrical position of the electrodes and return-path or parasitic capacitances. The model considers the frequency-dependent impedance of skin and muscle tissue layers and the effect of various coupling capacitances between the body and Tx/Rx electrodes to the Earth-Ground. A 2D planar structure of skin and muscle tissue layers is simulated using a Finite Element Method (FEM) tool to prove the validity of the proposed model. The effect of symmetry and asymmetry at the transmitter and receiver ends is also explained using the model. The model become very useful for fast calculation of Galvanic channel response without using any FEM tool. Experimental results show that the galvanic response is not only a function of channel length but also depends on the mismatch at the transmitter and receiver end. In case of a very high mismatch scenario, the channel behavior is dominated by the capacitive HBC, even for a galvanic excitation and termination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.