Abstract

Potential for large-scale physical transport processes to affect recruitment of Lake Michigan yellow perch ( Perca flavescens) was studied by examining the variation in larval distribution, growth rate, and settlement during June–August 1998–2003 using a 3D particle transport model linked with an individual-based bioenergetics growth model. In all years, virtual larvae were released nearshore in southwestern Lake Michigan, a known and important spawning region for yellow perch. For any given year, the same circulation pattern and water temperature either promoted or reduced yellow perch settlement depending on the consumption rates and settlement size chosen in the growth model. Increased consumption increased the number of settled larvae and expanded the total area where larvae settled, whereas increased settlement size reduced the number of settled larvae and reduced the overall settlement area. Interannual variability in circulation patterns and water temperature also resulted in contrasting larval settlement rates, settlement locations, and size of settlement areas between years. Model predictions were most consistent with field observations of age-0 yellow perch from Illinois and Michigan waters when settlement was assumed to occur at 50 mm. Moreover, our model suggests that larvae originating from southwestern Lake Michigan can recruit anywhere within the southern basin and even in the northern basin. Future model improvement will require information on the relative contribution of various sectors to the larval pool, their distribution with reference to the hydrodynamic landscape, the feeding and growth of yellow perch during their pelagic phase, and the size at transition to demersal stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.