Abstract

The influence of plant traits on forest fire behaviour has evolutionary, ecological and management implications, but is poorly understood and frequently discounted. We use a process model to quantify that influence and provide validation in a diverse range of eucalypt forests burnt under varying conditions. Measured height of consumption was compared to heights predicted using a surface fuel fire behaviour model, then key aspects of our model were sequentially added to this with and without species-specific information. Our fully specified model had a mean absolute error 3.8 times smaller than the otherwise identical surface fuel model (p < 0.01), and correctly predicted the height of larger (≥1 m) flames 12 times more often (p < 0.001). We conclude that the primary endogenous drivers of fire severity are the species of plants present rather than the surface fuel load, and demonstrate the accuracy and versatility of the model for quantifying this.

Highlights

  • ObjectivesOur aim was to show that stand-level characteristics of fire behaviour could be successfully predicted on the basis of knowledge of the flammable properties of plant species and the interaction of these properties that arise from considering the three dimensional arrangement of whole plants and their relevant, flammable features, such as leaves and stems

  • Data Availability Statement: All data not contained in the manuscript and supporting materials are available from https://github.com/pzylstra/ffm_cpp/ tree/Zylstra2016

  • Observed fire severity ranged from surface at two sites to crown fire at four sites

Read more

Summary

Objectives

Our aim was to show that stand-level characteristics of fire behaviour could be successfully predicted on the basis of knowledge of the flammable properties of plant species and the interaction of these properties that arise from considering the three dimensional arrangement of whole plants and their relevant, flammable features, such as leaves and stems

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.