Abstract
The interaction of influenza A viruses with the cell surface is controlled by the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). These two glycoproteins have opposing activities: HA is responsible for binding the host receptor (sialic acid) to allow infection, and NA is responsible for cleaving the receptor to facilitate virus release. Several studies have demonstrated that compatible levels of HA and NA activity are required for a virus to replicate efficiently. This is consequently of great interest for determining virus transmissibility. The concurrent role of these two proteins in receptor binding has never been directly measured. We demonstrate a novel biophysical approach based on bio-layer interferometry to measure the balance of the activities of these two proteins in real time. This technique measures virus binding to and release from a surface coated with either the human-like receptor analog α2,6-linked sialic acid or the avian-like receptor analog α2,3-linked sialic acid in both the presence and absence of NA inhibitors. Bio-layer interferometry measurements were also carried out to determine the effect of altering HA receptor affinity and NA stalk length on receptor binding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.