Abstract

In this work, we investigated the inhibitory ability of taurine on the aggregation of Human serum albumin (HSA) and also examined how it controls the kinetic parameters of the aggregation process. We demonstrated the structural alterations in the HSA after binding to the taurine at 65°C by exploiting various biophysical techniques. UV–vis spectroscopy was used to check the turbidometric changes in the protein. Thioflavin T fluorescence kinetics was subjected to explore kinetic parameters comparing the amyloid formation in the presence of varying concentration of taurine. Further, Congo red binding and ANS binding assays were performed to determine the inhibitory effect of taurine on HSA fibrillation process and surface hydrophobicity modifications occurring before and after the addition of taurine with protein, respectively. Far UV CD and Dynamic Light Scattering (DLS) confirmed that taurine stabilized the protein α-helical structure and formed complex with HSA which is further supported by differential scanning calorimetry (DSC). Moreover, microscopic imaging techniques were also done to analyze the morphology of aggregation formed. Taurine is also capable of altering the cytotoxicity of the proteinaceous aggregates. Molecular docking study also deciphered the possible residues involved in protein and drug interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.