Abstract

Expression of mobile colistin resistance gene mcr-1 results in the addition of phosphoethanolamine (pEtN) to the lipid A headgroup in the bacterial outer membrane (OM) of Gram-negative bacteria, increasing the resistance to the last-line polymyxins. However, the potential biological consequences of such modification remain unclear. Using coarse-grained molecular simulations with quantitative lipidomics models, we discovered pEtN modification of the lipid A headgroup caused substantial changes to the morphology and physicochemical properties of the OM. Single-lipid level structural and energetic analyses revealed that this modification resulted in lipid A-pEtN adopting an abnormally twisted and slanted conformation with a closer packing state because of strengthened inter-lipid attraction. The consequent accumulation of lipid A-pEtN produced a negative curvature of the OM and altered the membrane's tension, fluidity, and rigidity. Our results provide a key mechanistic connection between mcr-1 expression and biophysical changes in the bacterial OM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call