Abstract

Accurate estimates of aboveground biomass in tropical forests are important in carbon sequestration and global change studies. Tropical forest biomass estimation with microwave remote sensing is limited because of the strong scattering and attenuation properties of the green canopy. In this study a microwave/optical synergistic model was developed to quantify these effects to Synthetic Aperture Radar (SAR) signals and to better estimate woody structures, which are closely related to aboveground biomass. With a Leaf Area Index (LAI) retrieved from Japan Earth Resources Satellite (JERS)‐1 Very Near Infrared Radiometer (VNIR) imagery, leaf scattering and attenuation to woody scattering were quantified and removed from the total backscatter in a modified canopy scattering model. Woody scattering showed high sensitivity to biomass >100 tonnes/ha in tropical forests. Tree height and stand density were derived from the JERS‐1 SAR image with a root mean square error (RMSE) of 4 m and 161 trees/ha, respectively. Aboveground biomass was calculated using a general allometric equation. Biomass in secondary dry dipterocarps (Dipterocarpaceae family of tropical lowland deciduous trees) was overestimated. The modelled biomass in mixed deciduous and dry evergreen forests fit better with ground measurements. In mountainous areas with steep slopes, the topographic effects in the SAR image could not be properly corrected and therefore the results are unreliable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.