Abstract

The biophysical effect of land cover changes (LCC) on local temperature is currently a hot topic. This work selects one of the nine agricultural divisions in China, the Sichuan Basin and surrounding regions, as the study area. By combining long-term series satellite remote sensing products with the space-and-time method, the spatial and temporal variations of the actual biophysical effects of LCC on land surface temperature (LST) are obtained. The results show that: (1) From 2001 to 2020, LCCs from Savannas to Cropland, from Cropland to Savannas, and from Savannas to Mixed Forest occurred frequently within the study area, and their area proportions of the total conversions are 21.7%, 18.5%, and 17.6%, respectively. (2) The biophysical feedback of LCC in the study area led to a LST increase of 0.01 ± 0.004 K at annual scale, which presents a seasonal pattern of “strong warming in summer and autumn yet weak cooling in winter”. It can exacerbate 14.3% or alleviate 8.3% of the background climate warming effect, illustrating the importance of biophysical effects on local climate change. The interaction between savannas and cropland or mixed forest and urbanizations formed the main driver for the above patterns. (3) Both the occurrence area of LCC and the warming effects at annual or seasonal scale show a trend of “first rising and then declining”, whereas the cooling effect in winter exhibits continuous enhancement over time. The monodirectional or mutual conversion between cropland and savannas is the dominant conversion responsible for these temporal patterns. The findings can provide realistic scientific guidance for informing rational policies on land management and targeted strategies for climate change response in the study area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call