Abstract

The Algerian steppe is of great interest in terms of vegetation, mainly in the Naâma region. This steppe vegetation is generally composed of annual and perennial grasses and other herbaceous plants, as well as, bushes and small trees. It is characterized by an arid Mediterranean climate where the average annual precipitation (100 to 250 mm) is insufficient to ensure the maintenance of the vegetation, in which the potential evaporation always exceeds the precipitations. This aridity has strong hydrological effect and edaphic implications from which it is inseparable. Water losses are great than gains due to the evaporation and transpiration from plants (evapotranspiration). The wind moves soils for one location to another, and causes a strong evapotranspiration of the plants, which is explained by a strong chronic water deficit of climatic origin of these compared to the potential evapotranspiration, opposed to a humid climate. Evapotranspiration is certainly closely linked to climate factors (solar radiation, temperature, wind, etc.), but it also depends on the natural environment of the studied region. Potential evapotranspiration (PET) data estimated from Thornthwaite’s method for the three stations (Mécheria, Naâma and Ainsefra). The average annual value of potential evapotranspiration is of the order of 807 mm in Mécheria, of 795 mm in Naâma de and in Ainsefra of 847 mm. It is more than 3 times greater than the value of the rainfall received. This propels it globally in the aridity of the region and from which the water balance of plants is in deficit. The potential evapotranspiration of vegetation in arid areas is very important due to high temperature and sunshine. During the cold season, precipitation covers the needs of the potential evapotranspiration and allows the formation of the useful reserve from which the emergence of vegetation. From the month of April there is an exhaustion of the useful reserve which results of progressive deficit of vegetation. Faced with this phenomenon of evatranspiration, the steppe vegetation of the region then invests in “survival” by reducing the phenomena of evapotranspiration, photosynthetic leaf surfaces, in times of drought. These ecophysiological relationships can largely explain the adaptation of steppe species (low woody and herbaceous plants) to the arid Mediterranean climate. Mechanisms and diverse modalities were allowing them to effectively resist for this phenomenon. The adaptation of the steppe vegetation by the presence of a root system with vertical or horizontal growth or both and seems to depend on the environmental conditions, and by the reduction of the surface of transpiration, and by the fall or the rolling up of the leaves, and by a seasonal reduction of transpiration surface of the plant to reduce water losses during the dry season (more than 6 months) of the year. Some xerophytes produce “rain roots” below the soil surface, following light precipitation or during dew formation. Other persistent sclerophyllous species by which decreases transpiration by the hardness of the leaves often coated with a thick layer of wax or cutin.

Highlights

  • The South Oranian steppe of Naâma is characterized by sparse vegetation and only drought tolerant plants that can live there

  • The precipitation covers the needs of the potential evapotranspiration and allows the formation of the RFU from where the vegetation appears

  • This work analyzes the variability of evapotranspiration for steppe vegetation

Read more

Summary

Introduction

The South Oranian steppe of Naâma is characterized by sparse vegetation and only drought tolerant plants that can live there. The steppe vegetation is made up of open grassy formations, revealing bare soil between the plants and the amount of existing plant matter per unit area and roughly proportional to the precipitation received [1]. They are plant formations of a steppe character, primary or secondary, low and open in their typical physiognomy, and mainly subservient to arid and desert areas (rainfall

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call