Abstract

The epinephrine infusion test (EIT) typically induces marked QT prolongation in LQT1, but not LQT3, while the efficacy of β-blocker therapy is established in LQT1, but not LQT3. We encountered an LQT3 family, with an SCN5A V1667I mutation, that exhibited epinephrine-induced marked QT prolongation. Wild-type (WT) or V1667I-SCN5A was transiently expressed into tsA-201 cells, and whole-cell sodium currents (INa ) were recorded using patch-clamp techniques. To mimic the effects of epinephrine, INa was recorded after the application of protein kinase A (PKA) activator, 8-CPT-cAMP (200 μM), for 10 minutes. The peak density of V1667I-INa was significantly larger than WT-INa (WT: 469 ± 48 pA/pF, n = 20; V1667I: 690 ± 62 pA/pF, n = 19, P < .01). The steady-state activation (SSA) and fast inactivation rate of V1667I-INa were comparable to WT-INa . V1667I-INa displayed a significant depolarizing shift in steady-state inactivation (SSI) in comparison to WT-INa (V1/2 -WT: -88.1 ± 0.8 mV, n = 17; V1667I: -82.5 ± 1.1 mV, n = 17, P < .01), which increases window currents. Tetrodotoxin (30 μM)-sensitive persistent V1667I-INa was comparable to WT-INa . However, the ramp pulse protocol (RPP) displayed an increased hump in V1667I-INa in comparison to WT-INa . Although 8-CPT-cAMP shifted SSA to hyperpolarizing potentials in WT-INa and V1667I-INa to the same extent, it shifted SSI to hyperpolarizing potentials much less in V1667I-INa than in WT-INa (V1/2 -WT: -92.7 ± 1.3 mV, n = 6; V1667I: -85.3 ± 1.6 mV, n = 6, P < .01). Concordantly, the RPP displayed an increased hump in V1667I-INa , but not in WT-INa . We demonstrated an increase of V1667I-INa by PKA activation, which may provide a rationale for the efficacy of β-blocker therapy in some cases of LQT3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call