Abstract

Cationic polymers with hydrophobic side chains have gained great interest as DNA carriers since they form a compact complex with negatively charged DNA phosphate groups and interact with the cell membrane. Amphiphilic polyoxanorbornenes with different quaternary alkyl pyridinium side chains with ethyl-p(OPy2) and hexyl units-p(OPy6) bearing 10 kDa MWT were synthesized by living Ring-Opening Metathesis Polymerization method. The physicochemical characteristics: critical micellar concentration, size distribution, surface charge, and condensation of polymer/DNA complex were investigated. Morphology of complexes was monitored by Atomic force microscopy. Cytotoxicity and interaction of these complexes with model lipid vesicles mimicking the cell membrane were examined. These polymers were enabled to form small sized complexes of DNA, which interact with model membrane vesicles. It was found that the nature of hydrophobicity of the homopolymers significantly impacts rates of DNA complexation and the surface charge of the resulting complexes. These results highlight the prospect of the further examinations of these polymers as gene carriers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.