Abstract

Elongin C (ELC) is an essential component of the mammalian CBC(VHL) E3 ubiquitin ligase complex. As a step toward understanding the role of ELC in assembly and function of CBC-type ubiquitin ligases, we analyzed the quaternary structure and backbone dynamics of the highly homologous Elc1 protein from Saccharomyces cerevisiae. Analytical ultracentrifugation experiments in conjunction with size exclusion chromatography showed that Elc1 is a nonglobular monomer over a wide range of concentrations. Pronounced line broadening in (1)H,(15)N-HSQC NMR spectra and failure to assign peaks corresponding to the carboxy-terminal helix 4 of Elc1 indicated that helix 4 is conformationally labile. Measurement of (15)N NMR relaxation parameters including T(1), T(2), and the (1)H-(15)N nuclear Overhauser effect revealed (i) surprisingly high flexibility of residues 69-77 in loop 5, and (ii) chemical exchange contributions for a large number of residues throughout the protein. Addition of 2,2,2-trifluoroethanol (TFE) stabilized helix 4 and reduced chemical exchange contributions, suggesting that stabilization of helix 4 suppresses the tendency of Elc1 to undergo conformational exchange on a micro- to millisecond time scale. Binding of a peptide representing the major ELC binding site of the von Hippel-Lindau (VHL) tumor suppressor protein almost completely eliminated chemical exchange processes, but induced substantial conformational changes in Elc1 leading to pronounced rotational anisotropy. These results suggest that elongin C interacts with various target proteins including the VHL protein by an induced fit mechanism involving the conformationally flexible carboxy-terminal helix 4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call