Abstract

We have investigated the biophysical properties of a 35 amino acid peptide representing the entire length of a chloroplastic targeting sequence. The peptide, termed gamma-tp, corresponds in sequence to the transit peptide of the gamma subunit of the chloroplast ATP synthase from Chlamydomonas reinhardtii. We found that gamma-tp blocks the import of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase into isolated pea chloroplasts (KI approximately 5 microM), suggesting that it interacts with higher plant plastids in a physiological manner. We also found the gamma-tp to have a high affinity for nonpolar environments, but not to cause a general disruption of membrane integrity. Hydrophobic moment analysis suggests that the gamma-tp can adopt an amphipathic beta structure. However, circular dichroism measurements indicate that the peptide is largely a random coil, in both the presence and absence of sodium laurylsulfate micelles. In the absence of a recognizable secondary structural targeting motif, we asked whether the presence of a transit peptide on a chloroplast protein increases the protein's overall affinity for nonpolar environments. Phase-partition experiments with Triton X-114 suggest that this is not the case. These results are discussed in relation to the mechanism of protein targeting to chloroplasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call