Abstract

The hexamerization of natural, human IgG antibodies after cell surface antigen binding can induce activation of the classical complement pathway. Mutations stimulating Fc domain-mediated hexamerization can potentiate complement activation and induce the clustering of cell surface receptors, a finding that was applied to different clinically investigated antibody therapeutics. Here, we biophysically characterized how increased self-association of IgG1 antibody variants with different hexamerization propensity may impact their developability, rather than functional properties. Self-Interaction Chromatography, Dynamic Light Scattering and PEG-induced precipitation showed that IgG variant self-association at neutral pH increased in the order wild type (WT) < E430G < E345K < E345R < E430G-E345R-S440Y, consistent with functional activity. Self-association was strongly pH-dependent, and single point mutants were fully monomeric at pH 5. Differential Scanning Calorimetry and Fluorimetry showed that mutation E430G decreased conformational stability. Interestingly, heat-induced unfolding facilitated by mutation E430G was reversible at 60°C, while a solvent-exposed hydrophobic mutation caused irreversible aggregation. Remarkably, neither increased dynamic self-association propensity at neutral pH nor decreased conformational stability substantially affected the stability of concentrated variants E430G or E345K during storage for two years at 2-8°C. We discuss how these findings may inform the design and development of IgG-based therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.