Abstract

Experimental evidence indicates that the response of subthalamic neurons to excitatory postsynaptic potentials (EPSPs) is well described by their infinitesimal phase response curves (iPRC). However, the factors controlling the shape of that iPRC, and hence controlling the way subthalamic neurons respond to synaptic input, are unclear. We developed a biophysical model of subthalamic neurons to aid in the understanding of their iPRCs; this model exhibited an iPRC type common to many subthalamic cells. We devised a method for deriving its iPRC from its biophysical properties that clarifies how these different properties interact to shape the iPRC. This method revealed why the response of subthalamic neurons is well approximated by their iPRCs and how that approximation becomes less accurate under strong fluctuating input currents. It also connected iPRC structure to aspects of cellular physiology that could be estimated in simple current-clamp experiments. This allowed us to directly compare the iPRC predicted by our theory with the iPRC estimated from the response to EPSPs or current pulses in individual cells. We found that theoretically predicted iPRCs agreed well with estimates derived from synaptic stimuli, but not with those estimated from the response to somatic current injection. The difference between synaptic currents and those applied experimentally at the soma may arise from differences in the dynamics of charge redistribution on the dendrites and axon. Ultimately, our approach allowed us to identify novel ways in which voltage-dependent conductances interact with AHP conductances to influence synaptic integration that will apply to a wide range of cell types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.