Abstract

Biophysical properties and microstructural changes of swelling cornea which caused by endothelial cells damage will be evaluated. Swelling cornea models were established by endothelial cells damage in 114 Sprague Dawley rats. Relative gray value, swelling rate and light transmittance were measured to evaluated the biophysical properties and microstructure changes were observed by transmission electron microscopy. Relative gray value decreased while swelling rate rose along with time and both of them reached relative stability after 7 days. Light transmittance showed a decline trend with time even after corneal thickness had reached stable stage. Observed by transmission electron microscopy, interfibrillar distance increased, fewer proteoglycans coating appeared and remnants proteoglycan branches became thinner and longer in 7 days. Diameter of fibrils didn't change obviously with time. In cornea edema models caused by endothelial cells damage, the changes of biophysical property and microstructure can help us evaluate corneal edema accurately and objectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.