Abstract

BackgroundHuman T-lymphotropic virus type 1 (HTLV-1) is an important human retrovirus that is a cause of adult T-cell leukemia/lymphoma. While an important human pathogen, the details regarding virus replication cycle, including the nature of HTLV-1 particles, remain largely unknown due to the difficulties in propagating the virus in tissue culture. In this study, we created a codon-optimized HTLV-1 Gag fused to an EYFP reporter as a model system to quantitatively analyze HTLV-1 particles released from producer cells.ResultsThe codon-optimized Gag led to a dramatic and highly robust level of Gag expression as well as virus-like particle (VLP) production. The robust level of particle production overcomes previous technical difficulties with authentic particles and allowed for detailed analysis of particle architecture using two novel methodologies. We quantitatively measured the diameter and morphology of HTLV-1 VLPs in their native, hydrated state using cryo-transmission electron microscopy (cryo-TEM). Furthermore, we were able to determine HTLV-1 Gag stoichiometry as well as particle size with the novel biophysical technique of fluorescence fluctuation spectroscopy (FFS). The average HTLV-1 particle diameter determined by cryo-TEM and FFS was 71 ± 20 nm and 75 ± 4 nm, respectively. These values are significantly smaller than previous estimates made of HTLV-1 particles by negative staining TEM. Furthermore, cryo-TEM reveals that the majority of HTLV-1 VLPs lacks an ordered structure of the Gag lattice, suggesting that the HTLV-1 Gag shell is very likely to be organized differently compared to that observed with HIV-1 Gag in immature particles. This conclusion is supported by our observation that the average copy number of HTLV-1 Gag per particle is estimated to be 510 based on FFS, which is significantly lower than that found for HIV-1 immature virions.ConclusionsIn summary, our studies represent the first quantitative biophysical analysis of HTLV-1-like particles and reveal novel insights into particle morphology and Gag stochiometry.

Highlights

  • There are approximately 15-20 million people infected by human T-lymphotropic virus type 1 (HTLV-1) worldwide [1]

  • Given the technical and experimental limitations of working with Human T-lymphotropic virus type 1 (HTLV-1), we first sought to create an experimental model system that would be amenable to successfully and efficiently analyze HTLV-1 Gag trafficking and virus particle assembly and release. It is well-established that retroviral Gag polyprotein is sufficient for the assembly and release of virus-like particle (VLP) [reviewed by [20]]

  • Our previous studies indicated that HTLV-1 Gag constructs express Gag at low levels (Huating Wang and Louis Mansky, unpublished observations), presumably due to missing cis-elements on the RNA transcript required for efficient nuclear export

Read more

Summary

Introduction

There are approximately 15-20 million people infected by human T-lymphotropic virus type 1 (HTLV-1) worldwide [1]. HTLV-1 infection can result in a number of severe disorders including adult T cell leukemia/lymphoma (ATLL) as well as HTLV-1 associated myelopathy/tropical paraparesis (HAM/TSP) [2,3]. The Gag polyprotein is the main retroviral structural protein and is sufficient, in the absence of other viral proteins, for the production and release of immature VLPs [4]. Upon budding or immediately after immature particle release, proteolytic cleavage of the Gag polyproteins takes place and results in virus particle core maturation. Human T-lymphotropic virus type 1 (HTLV-1) is an important human retrovirus that is a cause of adult T-cell leukemia/lymphoma. While an important human pathogen, the details regarding virus replication cycle, including the nature of HTLV-1 particles, remain largely unknown due to the difficulties in propagating the virus in tissue culture. We created a codon-optimized HTLV-1 Gag fused to an EYFP reporter as a model system to quantitatively analyze HTLV-1 particles released from producer cells

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call