Abstract

BackgroundProcessing and pattern recognition of myoelectric signals have been at the core of prosthetic control research in the last decade. Although most studies agree on reporting the accuracy of predicting predefined movements, there is a significant amount of study-dependent variables that make high-resolution inter-study comparison practically impossible. As an effort to provide a common research platform for the development and evaluation of algorithms in prosthetic control, we introduce BioPatRec as open source software. BioPatRec allows a seamless implementation of a variety of algorithms in the fields of (1) Signal processing; (2) Feature selection and extraction; (3) Pattern recognition; and, (4) Real-time control. Furthermore, since the platform is highly modular and customizable, researchers from different fields can seamlessly benchmark their algorithms by applying them in prosthetic control, without necessarily knowing how to obtain and process bioelectric signals, or how to produce and evaluate physically meaningful outputs.ResultsBioPatRec is demonstrated in this study by the implementation of a relatively new pattern recognition algorithm, namely Regulatory Feedback Networks (RFN). RFN produced comparable results to those of more sophisticated classifiers such as Linear Discriminant Analysis and Multi-Layer Perceptron. BioPatRec is released with these 3 fundamentally different classifiers, as well as all the necessary routines for the myoelectric control of a virtual hand; from data acquisition to real-time evaluations. All the required instructions for use and development are provided in the online project hosting platform, which includes issue tracking and an extensive “wiki”. This transparent implementation aims to facilitate collaboration and speed up utilization. Moreover, BioPatRec provides a publicly available repository of myoelectric signals that allow algorithms benchmarking on common data sets. This is particularly useful for researchers lacking of data acquisition hardware, or with limited access to patients.ConclusionsBioPatRec has been made openly and freely available with the hope to accelerate, through the community contributions, the development of better algorithms that can potentially improve the patient’s quality of life. It is currently used in 3 different continents and by researchers of different disciplines, thus proving to be a useful tool for development and collaboration.

Highlights

  • Processing and pattern recognition of myoelectric signals have been at the core of prosthetic control research in the last decade

  • The time required for offline classification of all the testing sets was in average 1.03 (±0.018) ms, 0.58 (±0.003) ms, and 1.49 (±0.012) ms for Linear Discriminant Analysis (LDA), Multi-layer Perceptron (MLP), and Regulatory Feedback Networks (RFN) respectively

  • BioPatRec BioPatRec is demonstrated in this study by the implementation of a relatively new pattern recognition algorithm, namely Regulatory Feedback Networks (RFN)

Read more

Summary

Introduction

Processing and pattern recognition of myoelectric signals have been at the core of prosthetic control research in the last decade. BioPatRec allows a seamless implementation of a variety of algorithms in the fields of (1) Signal processing; (2) Feature selection and extraction; (3) Pattern recognition; and, (4) Real-time control. Researchers have employed a wide variety of algorithms aiming to improve the controllability of prosthetic devices, and most of them agree on reporting the accuracy of predicting movements, there is a significant amount of study-dependent variables that hinder high-resolution inter-study comparisons. Examples of such variables are: electrode type, size, and placement; amplifiers, filters, and acquisition hardware specifications; signals segmentation and characterization; and, protocols for the acquisition of the bioelectric signals.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.