Abstract

Developing novel activatable photosensitizers with excellent plasma membrane targeting ability is urgently needed for smart photodynamic therapy (PDT). Herein, a tumor acidity-activatable photosensitizer combined with a two-step bioorthogonal pretargeting strategy to anchor photosensitizers on the plasma membrane for effective PDT is developed. Briefly, artificial receptors are first anchored on the cell plasma membrane using cell-labeling agents (Az-NPs) via the enhanced permeability and retention effect to achieve the tumor cell labeling. Then, pH-sensitive nanoparticles (S-NPs) modified with dibenzocyclooctyne (DBCO) and chlorin e6 (Ce6) accumulate in tumor tissue and disassemble upon protonation of their tertiary amines in response to the acidic tumor environment, exposing the contained DBCO and Ce6. The selective, highly specific click reactions between DBCO and azide groups enable Ce6 to be anchored on the tumor cell surface. Upon laser irradiation, the cell membrane is severely damaged by the cytotoxic reactive oxygen species, resulting in remarkable cellular apoptosis. Taken together, the membrane-localized PDT by our bioorthogonal pretargeting strategy to anchor activatable photosensitizers on the plasma membrane provides a simple but effective method for enhancing the therapeutic efficacy of photosensitizers in anticancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.