Abstract

Tissue inhibitors of metalloproteinases (TIMPs) are natural inhibitors of the matrix metalloproteinase (MMP) family of proteins, whose members are key regulators of the proteolysis of extracellular matrix components and hence of multiple biological processes. In particular, imbalanced activity of matrix metalloproteinase-14 (MMP-14) may lead to the development of cancer and cardiovascular and other diseases. This study aimed to engineer TIMP2, one of the four homologous TIMPs, as a potential therapeutic by virtue of its ability to bind to the active-site Zn2+ of MMP-14. However, the susceptibility to degradation of TIMP2 and its small size, which results in a short circulation half-life, limit its use as a therapeutic. PEGylation was thus used to improve the pharmacokinetic profile of TIMP2. PEGylation of the MMP-targeting N-terminal domain of TIMP2 (N-TIMP2), via either cysteine or lysine residues, resulted in a significant decrease in N-TIMP2 affinity toward MMP-14 or multisite conjugation and conjugate heterogeneity, respectively. Our strategy designed to address this problem was based on incorporating a noncanonical amino acid (NCAA) into N-TIMP2 to enable site-specific mono-PEGylation. The first step was to incorporate the NCAA propargyl lysine (PrK) at position S31 in N-TIMP2, which does not interfere with the N-TIMP2-MMP-14 binding interface. Thereafter, site-specific PEGylation was achieved via a click chemistry reaction between N-TIMP2-S31PrK and PEG-azide-20K. Inhibition studies showed that PEGylated N-TIMP2-S31PrK did indeed retain its inhibitory activity toward MMP-14. The modified protein also showed improved serum stability vs non-PEGylated N-TIMP2. In vivo pharmacokinetic studies in mice revealed a significant 8-fold increase in the elimination half-life of PEGylated N-TIMP2 vs the non-PEGylated protein. This study shows that site-specific bioorthogonal mono-PEGylation extends the half-life of N-TIMP2 without impairing its biological activity, thereby highlighting the advantage of this strategy for generating potent PEGylated proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.