Abstract

Histone monoaminylation (i.e., serotonylation and dopaminylation) is an emerging category of epigenetic mark occurring on the fifth glutamine (Q5) residue of H3 N-terminal tail, which plays significant roles in gene transcription. Current analysis of histone monoaminylation is mainly based on site-specific antibodies and mass spectrometry, which either lacks high resolution or is time-consuming. In this study, we report the development of chemical probes for bioorthogonal labeling and enrichment of histone serotonylation and dopaminylation. These probes were successfully applied for the monoaminylation analysis of in vitro biochemical assays, cells, and tissue samples. The enrichment of monoaminylated histones by the probes further confirmed the crosstalk between H3Q5 monoaminylation and H3K4 methylation. Finally, combining the ex vivo and in vitro analyses based on the developed probes, we have shown that both histone serotonylation and dopaminylation are highly enriched in tumor tissues that overexpress transglutaminase 2 (TGM2) and regulate the three-dimensional architecture of cellular chromatin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.