Abstract

Supramolecular assemblies are an emerging class of nanomaterials for drug delivery systems (DDS), while their unintended retention in the biological milieu remains largely unsolved. To realize the prompt clearance of supramolecular assemblies, the bioorthogonal reaction to disassemble and clear the supramolecular assemblies within living cells is investigated here. A series of tetrazine-capped assembly precursors which can self-assemble into nanofibers and hydrogels upon enzymatic dephosphorylation are designed. Such an enzyme-instructed supramolecular assembly process can perform intracellularly. The time-dependent accumulation of assemblies elicits oxidative stress and induces cellular toxicity. Tetrazine-bearing assemblies react with trans-cyclooctene derivatives, which lead to the disruption of π-π stacking and induce disassembly. In this way, the intracellular self-assemblies disassemble and are deprived of potency. This bioorthogonal disassembly strategy leverages the biosafety aspect in developing nanomaterials for DDSs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.